Does statistical model perform at par with computationally expensive general circulation model for decadal prediction?

Author:

Sahastrabuddhe Rishi,Ghosh SubimalORCID

Abstract

Abstract Decadal predictions have gained immense importance over the last decade because of their use in near-term adaption planning. Computationally expensive coupled model intercomparison project phase 5 general circulation models (GCMs) are initialized every 5 years and they generate the decadal hindcasts with moderate skill. Here we test the hypothesis that computationally inexpensive data-driven models, such as multi-variate singular spectrum analysis (MSSA), which takes care of trends and oscillations, performs similar to GCMs. We pick up one of the most complex variables having low predictability, Indian summer monsoon rainfall (ISMR) and its possible causal sea surface temperatures (SST). We find that the MSSA approach performs similar to the GCMs in simulating SSTs beyond their nonlinear limits of predictability, which is ∼12 months. These SSTs are used for decadal predictions of ISMR and show improved skills compared to the GCMs. We conclude that data-driven models are possible alternatives to computationally expensive GCMs for decadal predictions.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3