Estimating the Impact of Projected Climate Change on Runoff across the Tropical Savannas and Semiarid Rangelands of Northern Australia

Author:

Petheram Cuan1,Rustomji Paul2,McVicar Tim R.1,Cai WenJu3,Chiew Francis H. S.1,Vleeshouwer Jamie4,Van Niel Thomas G.5,Li LingTao1,Cresswell Richard G.6,Donohue Randall J.1,Teng Jin1,Perraud Jean-Michel1

Affiliation:

1. Christian Laboratory, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

2. CSIRO Land and Water, Lucas Heights, Kirrawee, New South Wales, Australia

3. CSIRO Marine and Atmospheric Research, Aspendale, Aspendale, Victoria, Australia

4. Ecosciences Precinct, CSIRO Land and Water, Dutton Park, Queensland, Australia

5. CSIRO Land and Water, Floreat, Wembley, Western Australia, Australia

6. Sinclair Knight Merz, St Leonards, New South Wales, Australia

Abstract

Abstract The majority of the world’s population growth to 2050 is projected to occur in the tropics. Hence, there is a serious need for robust methods for undertaking water resource assessments to underpin the sustainable management of water in tropical regions. This paper describes the largest and most comprehensive assessment of the future impacts of runoff undertaken in a tropical region using conceptual rainfall–runoff models (RRMs). Five conceptual RRMs were calibrated using data from 115 streamflow gauging stations, and model parameters were regionalized using a combination of spatial proximity and catchment similarity. Future rainfall and evapotranspiration projections (denoted here as GCMES) were transformed to catchment-scale variables by empirically scaling (ES) the historical climate series, informed by 15 global climate models (GCMs), to reflect a 1°C increase in global average surface air temperature. Using the best-performing RRM ensemble, approximately half the GCMES used resulted in a spatially averaged increase in mean annual runoff (by up to 29%) and half resulted in a decrease (by up to 26%). However, ~70% of the GCMES resulted in a difference of within ±5% of the historical rainfall (1930–2007). The range in modeled impact on runoff, as estimated by five RRMs (for individual GCMES), was compared to the range in modeled runoff using 15 GCMES (for individual RRMs). For mid- to high runoff metrics, better predictions will come from improved GCMES projections. A new finding of this study is that in the wet–dry tropics, for extremely large runoff events and low flows, improvements are needed in both GCMES and rainfall–runoff modeling.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3