A Total Flow Perspective of Atmospheric Mass and Angular Momentum Circulations: Boreal Winter Mean State

Author:

Cai Ming1,Shin Chul-Su1

Affiliation:

1. Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida

Abstract

Abstract This paper reports a comprehensive diagnostic analysis of mass and angular momentum (AM) circulations and their budgets in boreal winter using the 32-yr daily NCEP–Department of Energy (DOE) reanalysis (1979–2010). The diagnosis is performed using instantaneous total flows before taking time and zonal average without decomposition of time mean and transient flows and separation of zonal mean and wavy flows. The analysis reveals that embedded in a broad hemispheric thermally direct meridional mass circulation in each hemisphere are three distinct but interconnected thermally direct meridional cells. They are the tropical Hadley cell, the stratospheric cell, and the extratropical zonally asymmetric Hadley cell. The tropical Hadley cell corresponds to the Hadley cell of the classic three-cell model whereas the extratropical Hadley cell and the stratospheric cell correspond to the eddy-driven extratropical residual circulation. The joint consideration of meridional mass and AM circulations helps to substantiate Hadley’s original view that the hemispheric-wide thermally direct meridional circulation can have broad surface easterly in the tropics and westerly in the extratropics. Because the mass circulation cannot have a net divergence anywhere in long time mean and the earth’s AM decreases toward the poles, the companion AM transport in the equatorward cold air branch inevitably has to be divergent. The downward transfer of westerly AM to the cold air branch by the pressure torque associated with westward tilted baroclinic waves dominates such divergence in the extratropics, explaining the prevailing surface westerly there. In the tropics and polar region where the meridional circulation is nearly zonally symmetric, the dominance of this divergence results in a surface easterly there.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3