Calibration of Noah Soil Hydraulic Property Parameters Using Surface Soil Moisture from SMOS and Basinwide In Situ Observations

Author:

Shellito Peter J.1,Small Eric E.1,Cosh Michael H.2

Affiliation:

1. Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado

2. Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

Abstract

Abstract Soil hydraulic properties (SHPs) control infiltration and redistribution of moisture in a soil column. The Noah land surface model (LSM) default simulation selects SHPs according to a location’s mapped soil texture class. SHPs are instead estimated at seven sites in North America through calibration. A single-objective algorithm minimizes the root-mean-square difference (RMSD) between simulated surface soil moisture and observations from 1) a dense network of in situ probes, 2) Soil Moisture Ocean Salinity (SMOS) satellite retrievals, and 3) SMOS retrievals adjusted such that their mean equals that of the in situ network. Parameters are optimized in 2012 and validated in 2013 against the in situ network. RMSD and unbiased RMSD (ubRMSD) assess resulting surface soil moisture behavior. At all sites, assigning SHP parameters from a different soil texture than the one that is mapped decreases the RMSD by an average of 0.029 cm3 cm−3. Similar improvements result from calibrating parameters using in situ network data (0.031 cm3 cm−3). Calibrations using remotely sensed data show comparable success (0.029 cm3 cm−3) if the SMOS product has no bias. Calibrated simulations are superior to texture-based simulations in their ability to decrease ubRMSD at times of year when the default simulation is worst. Changes to both RMSD and ubRMSD are small when the default simulation is already good. Most calibrated simulations have higher runoff ratios than do texture-based simulations, a change that warrants further evaluation. Overall, parameter selection using SMOS data shows good potential where biases are low.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3