Comparison of Single-Parameter and Multiparameter Ensembles for Assimilation of Radar Observations Using the Ensemble Kalman Filter

Author:

Yussouf Nusrat1,Stensrud David J.2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Observational studies indicate that the densities and intercept parameters of hydrometeor distributions can vary widely among storms and even within a single storm. Therefore, assuming a fixed set of microphysical parameters within a given microphysics scheme can lead to significant errors in the forecasts of storms. To explore the impact of variations in microphysical parameters, Observing System Simulation Experiments are conducted based on both perfect- and imperfect-model assumptions. Two sets of ensembles are designed using either fixed or variable parameters within the same single-moment microphysics scheme. The synthetic radar observations of a splitting supercell thunderstorm are assimilated into the ensembles over a 30-min period using an ensemble Kalman filter data assimilation technique followed by 1-h ensemble forecasts. Results indicate that in the presence of a model error, a multiparameter ensemble with a combination of different hydrometeor density and intercept parameters leads to improved analyses and forecasts and better captures the truth within the forecast envelope compared to single-parameter ensemble experiments with a single, constant, inaccurate hydrometeor intercept and density parameters. This conclusion holds when examining the general storm structure, the intensity of midlevel rotation, surface cold pool strength, and the extreme values of the model fields that are most helpful in determining and identifying potential hazards. Under a perfect-model assumption, the single- and multiparameter ensembles perform similarly as model error does not play a role in these experiments. This study highlights the potential for using a variety of realistic microphysical parameters across the ensemble members in improving the analyses and very short-range forecasts of severe weather events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3