Global Assimilation of Multiangle and Multipolarization SMOS Brightness Temperature Observations into the GEOS-5 Catchment Land Surface Model for Soil Moisture Estimation

Author:

De Lannoy Gabriëlle J. M.1,Reichle Rolf H.2

Affiliation:

1. NASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland

2. NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract Multiangle and multipolarization L-band microwave observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated into the Goddard Earth Observing System Model, version 5 (GEOS-5), using a spatially distributed ensemble Kalman filter. A variant of this system is also used for the Soil Moisture Active Passive (SMAP) Level 4 soil moisture product. The assimilation involves a forward simulation of brightness temperatures (Tb) for various incidence angles and polarizations and an inversion of the differences between Tb forecasts and observations into updates to modeled surface and root-zone soil moisture, as well as surface soil temperature. With SMOS Tb assimilation, the unbiased root-mean-square difference between simulations and gridcell-scale in situ measurements in a few U.S. watersheds during the period from 1 July 2010 to 1 July 2014 is 0.034 m3 m−3 for both surface and root-zone soil moisture. A validation against gridcell-scale measurements and point-scale measurements from sparse networks in the United States, Australia, and Europe demonstrates that the assimilation improves both surface and root-zone soil moisture results over the open-loop (no assimilation) estimates in areas with limited vegetation and terrain complexity. At the global scale, the assimilation of SMOS Tb introduces mean absolute increments of 0.004 m3 m−3 to the profile soil moisture content and 0.7 K to the surface soil temperature. The updates induce changes to energy fluxes and runoff amounting to about 15% of their respective temporal standard deviation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3