Year-Round Observation of Longwave Radiative Flux Divergence in Greenland

Author:

Hoch S. W.1,Calanca P.1,Philipona R.2,Ohmura A.1

Affiliation:

1. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

2. Physikalisch-Meteorologisches Observatorium Davos, and World Radiation Center, Davos Dorf, Switzerland

Abstract

Abstract Longwave radiative flux divergence within the lowest 50 m of the atmospheric boundary layer was observed during the Eidgenössische Technische Hochschule (ETH) Greenland Summit experiment. The dataset collected at 72°35′N, 38°30′W, 3203 m MSL is based on longwave radiation measurements at 2 and 48 m that are corrected for the influence of the supporting tower structure. The observations cover all seasons and reveal the magnitude of longwave radiative flux divergence and its incoming and outgoing component under stable and unstable conditions. Longwave radiative flux divergence during winter corresponds to a radiative cooling of −10 K day−1, but values of −30 K day−1 can persist for several days. During summer, the mean cooling effect of longwave radiative flux divergence is small (−2 K day−1) but exhibits a strong diurnal cycle. With values ranging from −35 K day−1 around midnight to 15 K day−1 at noon, the heating rate due to longwave radiative flux divergence is of the same order of magnitude as the observed temperature tendency. However, temperature tendency and longwave radiative flux divergence are out of phase, with temperature tendency leading the longwave radiative flux divergence by 3 h. The vertical variation of the outgoing longwave flux usually dominates the net longwave flux divergence, showing a strong divergence at nighttime and a strong convergence during the day. The divergence of the incoming longwave flux plays a secondary role, showing a slight counteracting effect. Fog is frequently observed during summer nights. Under such conditions, a divergence of both incoming and outgoing fluxes leads to the strongest radiative cooling rates that are observed. Considering all data, a correlation between longwave radiative flux divergence and the temperature difference across the 2–48-m layer is found.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference22 articles.

1. Procedures for improving pyrgeometer performance.;Albrecht;J. Appl. Meteor.,1977

2. Turbulence in the evolving stable boundary layer.;Caughey;J. Atmos. Sci.,1979

3. A radiative model of the stable nocturnal boundary layer with application to the polar night.;Cerni;J. Climate Appl. Meteor.,1984

4. A theory of fog formation.;Fleagle;J. Mar. Res.,1953

5. On the turbulence structure in the stable boundary layer over the Greenland ice sheet.;Forrer;Bound.-Layer Meteor.,1997

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3