Long-term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability

Author:

Huai Baojuan,van den Broeke Michiel R.ORCID,Reijmer Carleen H.ORCID

Abstract

Abstract. We present the surface energy balance (SEB) of the western Greenland Ice Sheet (GrIS) using an energy balance model forced with hourly observations from nine automatic weather stations (AWSs) along two transects: the Kangerlussuaq (K) transect with seven AWSs in the southwest and the Thule (T) transect with two AWSs in the northwest. Modeled and observed surface temperatures for non-melting conditions agree well with RMSEs of 1.1–1.6 K, while reasonable agreement is found between modeled and observed 10 d cumulative ice melt. Absorbed shortwave radiation (Snet) is the main energy source for melting (M), followed by the sensible heat flux (Qh). The multiyear average seasonal cycle of SEB components shows that Snet and M peak in July at all AWSs. The turbulent fluxes of sensible (Qh) and latent heat (Ql) decrease significantly with elevation, and the latter becomes negative at higher elevations, partly offsetting Qh. Average June, July and August (JJA) albedo values are <0.6 for stations below 1000 m a.s.l. and >0.7 for the higher stations. The near-surface climate variables and surface energy fluxes from reanalysis products ERA-Interim, ERA5 and the regional climate model RACMO2.3 were compared to the AWS values. The newer ERA5 product only significantly improves ERA-Interim for albedo. The regional model RACMO2.3, which has higher resolution (5.5 km) and a dedicated snow/ice module, unsurprisingly outperforms the reanalyses for (near-)surface climate variables, but the reanalyses are indispensable in detecting dependencies of west Greenland climate and melt on large-scale circulation variability. We correlate ERA5 with the AWS data to show a significant positive correlation of western GrIS summer surface temperature and melt with the Greenland Blocking Index (GBI) and weaker and opposite correlations with the North Atlantic Oscillation (NAO). This analysis may further help to explain melting patterns on the western GrIS from the perspective of circulation anomalies.

Funder

National Natural Science Foundation of China

European Commission

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3