Alignment Error Models and Ensemble-Based Data Assimilation

Author:

Lawson W. Gregory1,Hansen James A.1

Affiliation:

1. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract The concept of alternative error models is suggested as a means to redefine estimation problems with non-Gaussian additive errors so that familiar and near-optimal Gaussian-based methods may still be applied successfully. The specific example of a mixed error model including both alignment errors and additive errors is examined. Using the specific form of a soliton, an analytical solution to the Korteweg–de Vries equation, the total (additive) errors of states following the mixed error model are demonstrably non-Gaussian for large enough alignment errors, and an ensemble of such states is handled poorly by a traditional ensemble Kalman filter, even if position observations are included. Consideration of the mixed error model itself naturally suggests a two-step approach to state estimation where the alignment errors are corrected first, followed by application of an estimation scheme to the remaining additive errors, the first step aimed at removing most of the non-Gaussianity so the second step can proceed successfully. Taking an ensemble approach for the soliton states in a perfect-model scenario, this two-step approach shows a great improvement over traditional methods in a wide range of observational densities, observing frequencies, and observational accuracies. In cases where the two-step approach is not successful, it is often attributable to the first step not having sufficiently removed the non-Gaussianity, indicating the problem strictly requires an estimation scheme that does not make Gaussian assumptions. However, in these cases a convenient approximation to the two-step approach is available, which trades obtaining a minimum variance estimate ensemble mean for more physically sound updates of the individual ensemble members.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3