Implications of Multivariate Non-Gaussian Data Assimilation for Multi-scale Weather Prediction

Author:

Poterjoy Jonathan1

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Abstract

Abstract Weather prediction models currently operate within a probabilistic framework for generating forecasts conditioned on recent measurements of Earth’s atmosphere. This framework can be conceptualized as one that approximates parts of a Bayesian posterior density estimated under assumptions of Gaussian errors. Gaussian error approximations are appropriate for synoptic-scale atmospheric flow, which experiences quasi-linear error evolution over time scales depicted by measurements, but are often hypothesized to be inappropriate for highly nonlinear, sparsely-observed mesoscale processes. The current study adopts an experimental regional modeling system to examine the impact of Gaussian prior error approximations, which are adopted by ensemble Kalman filters (EnKFs) to generate probabilistic predictions. The analysis is aided by results obtained using recently-introduced particle filter (PF) methodology that relies on an implicit non-parametric representation of prior probability densities—but with added computational expense. The investigation focuses on EnKF and PF comparisons over month-long experiments performed using an extensive domain, which features the development and passage of numerous extratropical and tropical cyclones. The experiments reveal spurious small-scale corrections in EnKF members, which come about from inappropriate Gaussian approximations for priors dominated by alignment uncertainty in mesoscale weather systems. Similar behavior is found in PF members, owing to the use of a localization operator, but to a much lesser extent. This result is reproduced and studied using a low-dimensional model, which permits the use of large sample estimates of the Bayesian posterior distribution. Findings from this study motivate the use of data assimilation techniques that provide a more appropriate specification of multivariate non-Gaussian prior densities or a multi-scale treatment of alignment errors during data assimilation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3