Transient Response of the Southern Ocean to Idealized Wind and Thermal Forcing across Different Model Resolutions

Author:

Li Qian1,England Matthew H.2,McC. Hogg Andrew3

Affiliation:

1. a Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia

2. b Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

3. c Research School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Abstract

AbstractThe Southern Ocean has undergone significant climate-related changes over recent decades, including intensified westerly winds and increased radiative heating. The interplay between wind-driven cooling and radiative warming of the ocean is complex and remains unresolved. In this study, idealized wind and thermal perturbations are analyzed in a global ocean–sea ice model at two horizontal resolutions: nominally, 1° and 0.1°. The sea surface temperature (SST) response shows a clear transition from a wind-driven cooling phase to a warming phase. This warming transition is largely attributed to meridional and vertical Ekman heat advection, which are both sensitive to model resolution due to the model-dependent components of temperature gradients. At higher model resolution, due to a more accurate representation of near-surface vertical temperature inversion and upward Ekman heat advection around Antarctica, the anomalous SST warming is stronger and develops earlier. The mixed layer depth at midlatitudes initially increases due to a wind-driven increase in Ekman transport of cold dense surface water northward, but then decreases when the thermal forcing drives enhanced surface stratification; both responses are more sensitive at lower model resolution. With the wind intensification, the residual overturning circulation increases less in the 0.1° case because of the adequately resolved eddy compensation. Ocean heat subduction penetrates along more tilted isopycnals in the 1° case, but it orients to follow isopycnal layers in the 0.1° case. These findings have implications for understanding the ocean response to the combined effects of Southern Hemisphere westerly wind changes and anthropogenic warming.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3