The Roles of Westward-Propagating Waves and the QBO in Limiting MJO Propagation

Author:

Huang Kai1ORCID,Pegion Kathleen1

Affiliation:

1. a Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia

Abstract

Abstract A recent study categorized the Madden–Julian oscillation (MJO) during boreal winter season into four types called stand, jump, slow, and fast MJO. This study focuses on the stand and jump MJO. Based on whether their convection penetrates the Maritime Continent (MC), stand and jump MJOs are seen as non-penetrating (NP) MJOs, while the other two are seen as eastward-penetrating (EP) MJOs. Results reveal the relative roles of the westward-propagating wave (WPW), as well as the QBO and ENSO, in limiting MJO propagation. Lack of the premoistening over the southern sea surface of the MC stops NP MJO from penetrating the MC. The active convection of the WPWs hinders the descending branch of the NP MJO circulation and therefore leads to the insufficient meridional advective moistening over the southern sea surface of the MC. The independent convection over the Pacific for jump MJOs is influenced by a combined effect of the QBO and ENSO. The tropopause instability induced by the MJO is found to significantly decouple from its convection over the Pacific in westerly QBO (QBOW) winters more than in easterly QBO (QBOE) winters. For jump MJOs, the independent convection over the central Pacific comes from local WPWs whose amplification and further development into deep convection are correlated to jump the MJOs’ decoupled tropopause instability. For stand MJOs, however, the seasonal-mean La Niña–like cool SST anomalies weaken the WPW activity over the central Pacific and confine WPWs within the western Pacific. Therefore, the decoupled tropopause instability of stand MJOs is out phase of WPWs and fails to induce an independent convection over the central Pacific.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3