Modulation of the intraseasonal variability in early summer precipitation in eastern China by the Quasi-Biennial Oscillation and the Madden–Julian Oscillation

Author:

Ju Zefan,Rao JianORCID,Wang YueORCID,Yang Junfeng,Lu Qian

Abstract

Abstract. Using the reanalysis and multiple observations, the possible impact of the Madden–Julian Oscillation (MJO) on early summer (June–July) rainfall in eastern China and its modulation by the Quasi-Biennial Oscillation (QBO) are examined. The composite results show that the suppressed (enhanced) convection anomalies for MJO phases 8–1 (4–5) are more concentrated over the maritime continent and the western Pacific during easterly QBO (EQBO). As a consequence, more significant wet (dry) anomalies develop in South (eastern) China during MJO phases 8–1 (4–5) configured with easterly (westerly) QBO. The enhancement and expansion of the anomalous tropical convection band do not necessarily correspond to enhancement of the extratropical circulation response to MJO phases 8–1 (4–5) configured with westerly (easterly) QBO. The anomalous high (low) over the maritime continent and western Pacific associated with MJO phases 8–1 (4–5) is intensified (deepened) during easterly (westerly) QBO, leading to large southwesterly (northeasterly) anomalies in South China and the coasts, carrying abundant (sparse) moisture. Two anomalous meridional circulation cells are observed for MJO phases 8–1 in the East Asia sector, with downwelling anomalies around 5–20∘ N, upwelling anomalies around 20–30∘ N, and another downwelling branch northward of 30∘ N, which are enhanced during easterly QBO. The anomalous meridional circulation cells are reversed for MJO phases 4–5, which are stronger during westerly QBO with the anomalous downwelling and dry anomalies covering eastern China. The combined impact of MJO phases 8–1 and easterly QBO on the early summer rainfall is noticeable in 1996, 2016, and 2020. The enormous rainfall amount appeared along the Yangtze River in 1996, 2016, and 2020 due to the extended period of MJO phases 8–1 under the background of the easterly QBO.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3