Modulation of the intraseasonal variability in early summer precipitation in eastern China by the Quasi-Biennial Oscillation and the Madden–Julian Oscillation
-
Published:2023-12-04
Issue:23
Volume:23
Page:14903-14918
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ju Zefan, Rao JianORCID, Wang YueORCID, Yang Junfeng, Lu Qian
Abstract
Abstract. Using the reanalysis and multiple observations, the possible impact of the Madden–Julian Oscillation (MJO) on early summer (June–July) rainfall in eastern China and its modulation by the Quasi-Biennial Oscillation (QBO) are examined. The composite results show that the suppressed (enhanced) convection anomalies for MJO phases 8–1 (4–5) are more concentrated over the maritime continent and the western Pacific during easterly QBO (EQBO). As a consequence, more significant wet (dry) anomalies develop in South (eastern) China during MJO phases 8–1 (4–5) configured with easterly (westerly) QBO. The enhancement and expansion of the anomalous tropical convection band do not necessarily correspond to enhancement of the extratropical circulation response to MJO phases 8–1 (4–5) configured with westerly (easterly) QBO. The anomalous high (low) over the maritime continent and western Pacific associated with MJO phases 8–1 (4–5) is intensified (deepened) during easterly (westerly) QBO, leading to large southwesterly (northeasterly) anomalies in South China and the coasts, carrying abundant (sparse) moisture. Two anomalous meridional circulation cells are observed for MJO phases 8–1 in the East Asia sector, with downwelling anomalies around 5–20∘ N, upwelling anomalies around 20–30∘ N, and another downwelling branch northward of 30∘ N, which are enhanced during easterly QBO. The anomalous meridional circulation cells are reversed for MJO phases 4–5, which are stronger during westerly QBO with the anomalous downwelling and dry anomalies covering eastern China. The combined impact of MJO phases 8–1 and easterly QBO on the early summer rainfall is noticeable in 1996, 2016, and 2020. The enormous rainfall amount appeared along the Yangtze River in 1996, 2016, and 2020 due to the extended period of MJO phases 8–1 under the background of the easterly QBO.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference86 articles.
1. Abhik, S. and Hendon, H. H.: Influence of the QBO on the MJO During Coupled Model Multiweek Forecasts, Geophys. Res. Lett., 46, 9213–9221, https://doi.org/10.1029/2019GL083152, 2019. 2. Alexander, M. J., Grimsdell, A. W., Stephan, C. C., and Hoffmann, L.: MJO-related intraseasonal variation in the stratosphere: gravity waves and zonal winds, J. Geophys. Res. Atmos., 123, 775–788, https://doi.org/10.1002/2017JD027620, 2018. 3. Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation: high-latitude influence of the QBO, Q. J. Roy. Meteor. Soc., 140, 1–21, https://doi.org/10.1002/qj.2132, 2014. 4. Bai, L., Ren, H.-L., Wei, Y., Wang, Y., and Chen, B.: Influence of Madden–Julian Oscillation on precipitation over the Tibetan Plateau in boreal summer, Atmosphere, 14, 70, https://doi.org/10.3390/atmos14010070, 2022. 5. Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073, 2001.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|