Forcing, Cloud Feedbacks, Cloud Masking, and Internal Variability in the Cloud Radiative Effect Satellite Record

Author:

Raghuraman Shiv Priyam1ORCID,Paynter David2,Menzel Raymond23,Ramaswamy V.12

Affiliation:

1. a Program in Atmospheric and Oceanic Sciences, Princeton University, New Jersey

2. b NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

3. c University Corporation for Atmospheric Research, Princeton, New Jersey

Abstract

Abstract Satellite observations show a near-zero trend in the top-of-atmosphere global-mean net cloud radiative effect (CRE), suggesting that clouds did not further cool nor heat the planet over the last two decades. The causes of this observed trend are unknown and can range from effective radiative forcing (ERF) to cloud feedbacks, cloud masking, and internal variability. We find that the near-zero NetCRE trend is a result of a significant negative trend in the longwave (LW) CRE and a significant positive trend in the shortwave (SW) CRE, cooling and heating the climate system, respectively. We find that it is exceptionally unlikely (<1% probability) that internal variability can explain the observed LW and SW CRE trends. Instead, the majority of the observed LWCRE trend arises from cloud masking wherein increases in greenhouse gases reduce OLR in all-sky conditions less than in clear-sky conditions. In SWCRE, rapid cloud adjustments to greenhouse gases, aerosols, and natural forcing agents (ERF) explain a majority of the observed trend. Over the northeast Pacific, we show that ERF, hitherto an ignored factor, contributes as much as cloud feedbacks to the observed SWCRE trend. Large contributions from ERF and cloud masking to the global-mean LW and SW CRE trends are supplemented by negative LW and positive SW cloud feedback trends, which are detectable at 80%–95% confidence depending on the observational uncertainty assumed. The large global-mean LW and SW cloud feedbacks cancel, leaving a small net cloud feedback that is unconstrained in sign, implying that clouds could amplify or dampen global warming.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference90 articles.

1. Observations of planetary heating since the 1980s from multiple independent datasets;Allison, L. C.,2020

2. Attribution of observed recent decrease in low clouds over the northeastern Pacific to cloud‐controlling factors;Andersen, H.,2022

3. Effective radiative forcing in a GCM with fixed surface temperatures;Andrews, T.,2021

4. On the effect of historical SST patterns on radiative feedback;Andrews, T.,2022

5. Observational and model estimates of cloud amount feedback over the Indian and Pacific Oceans;Bellomo, K.,2014

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3