Affiliation:
1. a Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
2. b Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Abstract
Abstract
Storm-track activity over the North Pacific (NP) climatologically exhibits a clear minimum in midwinter, when the westerly jet speed sharply maximizes. This counterintuitive phenomenon, referred to as the “midwinter minimum (MWM),” has been investigated from various perspectives, but the mechanisms are still to be unrevealed. Toward better understanding of this phenomenon, the present study delineates the detailed seasonal evolution of climatological-mean Eulerian statistics and energetics of migratory eddies along the NP storm track over 60 years. As a comprehensive investigation of the mechanisms for the MWM, this study has revealed that the net eddy conversion/generation rate normalized by the eddy total energy, which is independent of eddy amplitude, is indeed reduced in midwinter. The reduction from early winter occurs mainly due to the decreased effectiveness of the baroclinic energy conversion through seasonally weakened temperature fluctuations and the resultant poleward eddy heat flux. The reduced net normalized conversion/generation rate in midwinter is also found to arise in part from the seasonally enhanced kinetic energy conversion from eddies into the strongly diffluent Pacific jet around its exit. The seasonality of the net energy influx also contributes especially to the spring recovery of the net normalized conversion/generation rate. The midwinter reduction in the normalized rates of both the net energy conversion/generation and baroclinic energy conversion was more pronounced in the period before the late 1980s, during which the MWM of the storm-track activity was climatologically more prominent.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Japan Science and Technology Agency
Ministry of the Environment
Japan Society for the Promotion of Science
Israel Science Foundation
Publisher
American Meteorological Society
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献