Rapid Decadal Acceleration of Sea Level Rise along the U.S. East and Gulf Coasts during 2010–22 and Its Impact on Hurricane-Induced Storm Surge

Author:

Yin Jianjun1

Affiliation:

1. a Department of Geosciences, The University of Arizona, Tucson, Arizona

Abstract

Abstract Sea level rise (SLR) shows important spatiotemporal variability. A better understanding of characteristics and mechanisms of the variability is critical for future SLR projection and coastal preparedness. Here we analyze various observational and modeling data of sea level and its components, atmospheric pressure and winds, and ocean circulation in the North Atlantic. Both the century-long tide gauge data and the more recent altimetry data reveal a rapid decadal acceleration of SLR during 2010–22 along the U.S. East Coast and the Gulf of Mexico coast. The acceleration is most notable on the Southeast and Gulf Coasts, as quantified by the decadal rise rate, extreme annual sea level departure from the long-term trend, as well as the sea level record-breaking frequency and magnitude. Our analysis suggests that this SLR acceleration is largely a lagged response to the observed slowdown of the Atlantic meridional overturning circulation in 2009–10. In the North Atlantic, the response is characterized by a large-scale pattern of contrast changes in dynamic sea level between the Eastern Subpolar Gyre and the U.S. Southeast and Gulf Coasts. The latest global climate model generally captures this observed pattern and projects that further increase in greenhouse gas forcing will modify it over the twenty-first century. The faster SLR on the Southeast and Gulf Coasts, at a rate of more than 10 mm yr−1 during 2010–22, coincided with active and even record-breaking North Atlantic hurricane seasons in recent years. As a consequence, the elevated storm surge exacerbated coastal flooding and damage particularly on the Gulf Coast.

Funder

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference72 articles.

1. Steric sea level variations during 1957–1994: Importance of salinity;Antonov, J. I.,2002

2. Impact of a 30% reduction in Atlantic meridional overturning during 2009–2010;Bryden, H. L.,2014

3. Reduction in ocean heat transport at 26°N since 2008 cools the Eastern Subpolar Gyre of the North Atlantic Ocean;Bryden, H. L.,2020

4. Toward sustained monitoring of subsidence at the coast using InSAR and GPS: An application in Hampton Roads, Virginia;Buzzanga, B.,2020

5. North Atlantic Ocean circulation and decadal sea level change during the altimetry era;Chafik, L.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3