Temporospatial distribution and trends of thunderstorm, hail, gale and heavy precipitation events over the Tibetan Plateau and associated mechanisms

Author:

Tang Jie1,Guo Xueliang2,Chang Yi3,Lu Guangxian3,Qi Peng3

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China and the State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences, Beijing, and Key Laboratory for Cloud Physics, China Meteorological Administration, Beijing, China

2. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China

3. State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences, Beijing, and Key Laboratory for Cloud Physics, China Meteorological Administration, Beijing, China

Abstract

AbstractTemporospatial distribution and trends of thunderstorm, hail, gale and heavy precipitation events over the Tibetan Plateau (TP), as well as the associated mechanisms with observational data from 1979-2016 are investigated, which have not been fully studied under a changing climate. The results indicate that thunderstorm, hail and gale events over the whole TP show significant decreasing trends, while heavy precipitation events have an insignificant increasing trend. The southeast (SE) and central south (SC) subregions have obvious significant decreasing trends in thunderstorm, hail and gale events, while the northeast (NE) subregion has a significant increasing trend in heavy precipitation events. It is found that the atmospheric circulation anomaly caused by the northwestern Atlantic Sea Surface Temperature (SST) anomaly associated with the North Atlantic Oscillation (NAO) should be responsible for these changes. A strong wave train triggered by the northwestern Atlantic SST anomaly propagates from the northern Atlantic to East Asia through Europe, and induces a more upper-level warming over the TP and an anomalous anticyclonic circulation near the Lake Baikal, resulting in more stable atmosphere and blocking effect, which forces the mid-latitude westerlies and associated cold air to shift poleward. The weakened cold air advection over the TP decreases the baroclinic instability and convection initiation, and finally causes the significant decreasing trends in severe weather events. On the other hand, the enhanced easterly winds in the southern flank of the anticyclonic circulation can significantly increase the water vapor flux from the eastern boundary of the TP and heavy precipitation events in the NE subregion.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3