Affiliation:
1. a Key Laboratory of Physical Oceanography and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
2. b Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Abstract
AbstractChange in the extratropical wintertime-mean mixed layer has been widely studied, given its importance to both physical and biogeochemical processes. With a focus on the south of the Kuroshio Extension region where the mixed layer is deepest in March, this study shows that variation of the synoptic-scale extreme mixed layer depth (MLD) is a better precursor than the monthly mean (or nonextreme) MLD for change in the subtropical mode water formation in spring, based on the NCEP Climate Forecast System Reanalysis (1979–2010). It is found that the extreme MLD events are attributable to the accumulation of excessive surface cooling driven by the synoptic storms that characterize cold-air outbreaks. Particularly, the difference between the extreme and nonextreme MLD is primarily related to differences in the cumulative synoptic heat flux anomalies, while a change in the preconditioning upper-ocean stratification contributes almost equally to both cases. Relative contributions of oceanic and atmospheric forcing to the interannual variation of the extreme MLD are quantified using a bulk mixed layer model. Results show comparable contributions: the preconditioning stratification change accounts for ~44% of total variance of the extreme MLD, whereas the convective mixing by surface heat flux and the mechanical stirring by wind stress account for ~35% and ~13%, respectively. In addition, both the reanalysis and observational data reveal that the extreme and nonextreme MLD has been shallowed significantly during 1979–2010, which is accounted for by the strengthened stratification due to the enhanced ocean surface warming by the Kuroshio heat transport.
Funder
National Postdoctoral Program for Innovative Talents Foundation of China
National Natural Science Foundation of China (NSFC) Projects
National Key Research and Development Program of China
Publisher
American Meteorological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献