Mesoscale Ocean–Atmosphere Coupling Effects on the North Pacific Subtropical Mode Water

Author:

Yu Jingjie1ORCID,Gan Bolan12ORCID,Yang Haiyuan12,Chen Zhaohui12,Xu Lixiao12,Wu Lixin12

Affiliation:

1. a Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

2. b Laoshan Laboratory, Qingdao, China

Abstract

Abstract Subtropical mode water (STMW) is a thick layer of water mass characterized by homogeneous properties within the main pycnocline, important for oceanic oxygen utilization, carbon sequestration, and climate regulation. North Pacific STMW is formed in the Kuroshio Extension region, where vigorous mesoscale eddies strongly interact with the atmosphere. However, it remains unknown how such mesoscale ocean–atmosphere (MOA) coupling affects the STMW formation. By conducting twin simulations with an eddy-resolving global climate model, we find that approximately 25% more STMW is formed with the MOA coupling than without it. This is attributable to a significant increase in ocean latent heat release primarily driven by higher wind speed over the STMW formation region, which is associated with the southward deflection of storm tracks in response to oceanic mesoscale imprints. Such enhanced surface latent heat loss overwhelms the stronger upper-ocean restratification induced by vertical eddy and turbulent heat transport, leading to the formation of colder and denser STMW in the presence of MOA coupling. Further investigation of a multimodel and multiresolution ensemble of global coupled models reveals that the agreement between the STMW simulation in eddy-present/rich coupled models and observations is superior to that of eddy-free ones, likely due to more realistic representation of MOA coupling. However, the ocean-alone model simulations show significant limitations in improving STMW production, even with refined model resolution. This indicates the importance of incorporating the MOA coupling into Earth system models to alleviate biases in STMW and associated climatic and biogeochemical impacts. Significance Statement North Pacific subtropical mode water (STMW) is a distinct pycnostad within the main thermocline located south of the Kuroshio Extension. As short-term heat and carbon silos, STMW is traditionally thought to be driven by the basin-scale atmospheric forcing. The role of air–sea interactions at mesoscales residing in the Kuroshio Extension region has been overlooked. Here, we demonstrate that the strong thermal feedback of mesoscale sea surface temperature anomalies is not negligible for the STMW formation. This is achieved by accelerating wind and consequently promoting ocean latent heat release. Our results pinpoint the significance of accounting for the role of oceanic mesoscale feedback in improving the simulation of STMW as well as its climatic and biogeochemical impacts in Earth system models.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Foundation of Laoshan Laboratory

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Qingdao Post-Doctoral Grant

Publisher

American Meteorological Society

Reference127 articles.

1. A new method of interpolation and smooth curve fitting based on local procedures;Akima, H.,1970

2. A mechanism for the recurrence of wintertime midlatitude SST anomalies;Alexander, M. A.,1995

3. Bootstrap methods for developing predictive models;Austin, P. C.,2004

4. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean;Bates, N. R.,2002

5. Formation and spreading of subtropical mode water in the North Pacific;Bingham, F. M.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3