Climate Sensitivity is Sensitive to Changes in Ocean Heat Transport

Author:

Singh Hansi1,Feldl Nicole2,Kay Jennifer E.3,Morrison Ariel L.1

Affiliation:

1. a University of Victoria, Victoria, British Columbia, Canada

2. b University of California, Santa Cruz, Santa Cruz, California

3. c University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract Do changes in ocean heat transport (OHT) that occur with CO2 forcing, impact climate sensitivity in Earth system models? Changes in OHT with warming are ubiquitous in model experiments: when forced with CO2, such models exhibit declining poleward OHT in both hemispheres at most latitudes, which can persist over multicentennial time scales. To understand how changes in OHT may impact how the climate system responds to CO2 forcing, particularly climate sensitivity, we perform a series of Earth system model experiments in which we systematically perturb OHT (in a slab ocean, relative to its preindustrial control climatology) while simultaneously doubling atmospheric CO2. We find that equilibrium climate sensitivity varies substantially with OHT. Specifically, there is a 0.6 K decrease in global mean surface warming for every 10% decline in poleward OHT. Radiative feedbacks from CO2 doubling, and the warming attributable to each of them, generally become more positive (or less negative) when poleward OHT increases. Water vapor feedback differences account for approximately half the spread in climate sensitivity between experiments, while differences in the lapse rate and surface albedo feedbacks account for the rest. Prescribed changes in OHT instigate opposing changes in atmospheric energy transport and the general circulation, which explain differences in atmospheric water vapor and lapse rate between experiments. Our results show that changes in OHT modify atmospheric radiative feedbacks at all latitudes, thereby driving changes in equilibrium climate sensitivity. More broadly, they demonstrate that radiative feedbacks are not independent of the coupled (atmosphere and ocean) dynamic responses that accompany greenhouse gas forcing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3