On the Impact of Net-Zero Forcing Q-flux Change

Author:

Eiselt Kai-Uwe1ORCID,Graversen Rune Grand1

Affiliation:

1. University of Tromsø: UiT Norges arktiske universitet

Abstract

Abstract Numerical climate model simulations suggest that global warming is enhanced or hampered by the spatial pattern of the warming itself. This phenomenon is known as the ``pattern effect'' and has in recent years become the most promising explanation for the change over time of climate sensitivity in climate models. Under historical global warming, different patterns of surface-temperature change have emerged, notably a yet unexplained cooling in the Southern Ocean and the East Pacific. Historical climate model simulations notoriously fail to reproduce this cooling, which may contribute to the deviation of the simulated global-mean warming from the observed record.Here we qualitatively investigate the potential impact of historical and other surface-temperature pattern changes by changing the ocean heat transport convergence (Q-flux) in a slab-ocean model. The Q-flux changes are always implemented such that in the global mean they impose no net forcing. Consistent with earlier studies we find that the impact of a negative Q-flux change in the Southern Ocean has a stronger effect than in other regions because of a feedback loop between sea-surface temperatures (SSTs) and clouds in the Southern Ocean and the stably stratified regions in the tropics. The SST-cloud feedback loop facilitates the expansion of the Antarctic sea ice, indeed taking the model into a Snowball-Earth state. The intensity of this effect is found to be model dependent, especially due to differences in the cloud parametrisation. In experiments with deactivated sea ice the impact of the negative Q-flux change is much weaker.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3