Subseasonal-to-Seasonal Predictability of Onset Dates of South China Sea Summer Monsoon: A Perspective of Meridional Temperature Gradient

Author:

Liu Boqi1,Zhu Congwen1

Affiliation:

1. 1 State Key Laboratory of Severe Weather and Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Abstract

AbstractThe onset of the South China Sea summer monsoon (SCSSM) has traditionally been ascribed to the El Niño–Southern Oscillation (ENSO) on an interannual timescale, but the two do not correspond in some years. The present study applies harmonic analysis on the meridional temperature gradient (MTG) in mid–upper troposphere over South China Sea (SCS) and decomposes the onset process to be a slow-varying seasonal cycle and transient subseasonal component. The ENSO-related air temperature anomaly in the southern SCS provides seasonal predictability of SCSSM onset by a stable and robust relationship between ENSO and MTG seasonal cycle. However, in the northern SCS, the MTG is regulated by an intraseasonal oscillation (ISO) of extratropical air temperature with a significant 10–30-day period. This ISO originates over the western TP, then propagates eastward and gets enhanced by anomalous diabatic heating due to spring rainfall anomaly over South China, as a result of subseasonal thermal forcing of TP. When the ISO arrives to the north of the SCS, it directly changes the tropospheric temperature to modulate the MTG. Meanwhile, the upper-level circulation associated with the ISO alters the meridional potential vorticity advection and pumping effect, followed by the anomalous low-level westerly wind and monsoon convection over the SCS. The SCSSM onset is evidently disrupted from its seasonal cycle when this ISO is more active. Since the independence of its intensity from ENSO, this extratropical ISO over TP and South China provides additional subseasonal predictability of the onset dates of the SCSSM.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3