The relationship between the South China Sea summer monsoon onset and North Pacific meridional sea surface temperature anomalies

Author:

Zhao Yuxuan12ORCID,Liu Ruoyu2,Yao Chenwei3,Li Shuai12ORCID,Wu Zhiwei1,Gong Zhiqiang4ORCID,Feng Guolin45ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences Fudan University Shanghai China

2. Chinese Academy of Meteorological Sciences Beijing China

3. College of Physics and Technology Suzhou University of Science and Technology Suzhou China

4. Laboratory for Climate Studies National Climate Research Center, China Meteorological Administration (CMA) Beijing China

5. College of Physical Science and Technology Yangzhou University Yangzhou China

Abstract

AbstractThis study investigates the connection between significant sea surface temperature (SST) anomalies in the North Pacific during boreal spring (February–April, FMA) and the subsequent South China Sea (SCS) summer monsoon (SCSSM) onset. The SST anomalies, similar to the Pacific meridional mode (PMM), referred to as the PMM+ mode, are defined to examine the new influencing factor on the SCSSM onset. Our findings reveal that the (February–March–April, FMA) PMM+ has a noteworthy positive correlation with the subsequent May SCSSM onset date, with this correlation being minimally affected by the El Niño–Southern Oscillation (ENSO) during preceding winter. A robust positive PMM+ in boreal spring can be persist until May via atmosphere–ocean interaction. The cooling area over Western North Pacific would reduce precipitation heating, thereby generating Rossby waves that reinforce the formation of the anomalous anticyclone over the SCS. As a result, easterly winds and suppressed convection prevail over the SCS, making the SCSSM break out later than normal. Furthermore, the amplification of anticyclonic vorticity anomalies also strengthens the western North Pacific subtropical high (WNPSH) stronger and shifts its position further westward compared to normal years, thereby blocking active convection to the west of the SCS. Given the weakened relationship between El Niño–Southern Oscillation (ENSO) and the SCSSM onset in recent years, the PMM+ could be considered as a promising preceding signal for the SCSSM onset, thus holding significant implications for the SCSSM prediction efforts.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3