Climate Change Fosters Competing Effects of Dynamics and Thermodynamics in Seasonal Predictability of Arctic Sea Ice

Author:

Polyakov Igor V.12,Mayer Michael34,Tietsche Steffen3,Karpechko Alexey Yu.2

Affiliation:

1. a International Arctic Research Center and College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska

2. b Finnish Meteorological Institute, Helsinki, Finland

3. c European Centre for Medium-Range Weather Forecasts, Bonn, Germany

4. d Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Abstract

Abstract The fast decline of Arctic sea ice necessitates a stronger focus on understanding the Arctic sea ice predictability and developing advanced forecast methods for all seasons and for pan-Arctic and regional scales. In this study, the operational forecasting system combining an advanced eddy-permitting ocean–sea ice ensemble reanalysis ORAS5 and state-of-the-art seasonal model-based forecasting system SEAS5 is used to investigate effects of sea ice dynamics and thermodynamics on seasonal (growth-to-melt) Arctic sea ice predictability in 1993–2020. We demonstrate that thermodynamics (growth/melt) dominates the seasonal evolution of mean sea ice thickness at pan-Arctic and regional scales. The thermodynamics also dominates the seasonal predictability of sea ice thickness at pan-Arctic scale; however, at regional scales, the predictability is dominated by dynamics (advection), although the contribution from ice growth/melt remains perceptible. We show competing influences of sea ice dynamics and thermodynamics on the temporal change of ice thickness predictability from 1993–2006 to 2007–20. Over these decades, there was increasing predictability due to growth/melt, attributed to increased winter ocean heat flux in both Eurasian and Amerasian basins, and decreasing predictability due to advection. Our results demonstrate an increasing impact of advection on seasonal sea ice predictability as the region of interest becomes smaller, implying that correct modeling of sea ice drift is crucial for developing reliable regional sea ice predictions. This study delivers important information about sea ice predictability in the “new Arctic” conditions. It increases awareness regarding sea ice state and implementation of sea ice forecasts for various scientific and practical needs that depend on accurate seasonal sea ice forecasts.

Funder

Directorate for Geosciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3