Middle Atmosphere Temperature Changes Derived from SABER Observations during 2002-2020

Author:

Zhao X. R.1,Sheng Z.12,Shi H. Q.1,Weng L. B.1,He Y.1

Affiliation:

1. a College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China.

2. b Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China.

Abstract

AbstractUsing temperature data measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument from February 2002 to March 2020, the temperature linear trend and temperature responses to the solar cycle (SC), Quasi-Biennial Oscillation (QBO), and El Niño-Southern Oscillation (ENSO) were investigated from 20 km to 110 km for the latitude range of 50°S-50°N. A four-component harmonic fit was used to remove the seasonal variation from the observed monthly temperature series. Multiple linear regression (MLR) was applied to analyze the linear trend, SC, QBO, and ENSO terms. In this study, the near-global mean temperature shows consistent cooling trends throughout the entire middle atmosphere, ranging from -0.28 to -0.97 K/decade. Additionally, it shows positive responses to the solar cycle, varying from -0.05 to 4.53 K/100sfu. A solar temperature response boundary between 50°S and 50°N is given, above which the atmospheric temperature is strongly affected by solar activity. The boundary penetrates deep below the stratopause to ~ 42 km over the tropical region and rises to higher altitudes with latitude. Temperature responses to the QBO and ENSO can be observed up to the upper mesosphere and lower thermosphere. In the equatorial region, 40%-70% of the total variance is explained by QBO signals in the stratosphere and 30%-50% is explained by the solar signal in the upper middle atmosphere. Our results, obtained from 18-year SABER observations, are expected to be an updated reliable estimation of the middle atmosphere temperature variability for the stratospheric ozone recovery period.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference102 articles.

1. An overview of the SABER experiment and preliminary calibration results;Russell;Proc. SPIE Int. Soc. Opt. Eng.,1999

2. Observed temperature changes in the troposphere and stratosphere from 1979 to 2018;Steiner;J. Climate,2020

3. Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere;Akmaev;J. Atmos. Sol.-Terr. Phys.,2006

4. Influence of El Niño–Southern Oscillation in the mesosphere;Li;Geophys. Res. Lett.,2013

5. Solar response in the temperature over the equatorial middle atmosphere;Beig;J. Atmos. Sol.-Terr. Phys.,2009

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3