Comparing the Upper Mesospheric Temperature Trend and the Response to Solar Activity Derived From the Daily Mean and Nocturnal Na Lidar Observations

Author:

Yuan Tao12ORCID,Pena Melania1,Hsu Chih‐Ting3ORCID,Qian Liying3ORCID

Affiliation:

1. Physics Department Utah State University Logan UT USA

2. Center for Atmospheric and Space Sciences Utah State University Logan UT USA

3. The National Center for Atmospheric Research Boulder CO USA

Abstract

AbstractOver the past decades, various experimental and numerical model studies have indicated cooling trend in the mesosphere and lower thermosphere (MLT), while the magnitude of the trend varies noticeably. Previous studies using the lidar observations derived the temperature trends and solar responses solely from the traditional nocturnal measurements. While these archived results are more or less in agreement with modeling studies, one of the main uncertainties in these studies is the potential biases induced by the trends of the diurnal tide forced in the lower atmosphere, and that of the in situ exothermal reactions involving the photolysis. In the MLT, the diurnal tide has significant seasonal variations, considerable amplitude and is one of the dominant dynamic sources. However, its potential effects in the trend studies have rarely been discussed. In this paper, we present and compare the long‐term temperature trends in the upper mesosphere utilizing the daily mean and nightly mean temperature profiles measured by a Sodium (Na) Doppler lidar at midlatitude. The system was operating routinely in full diurnal cycles between 2002 and 2017, obtaining a unique multi‐year temperature data set. A customized multi‐linear regression (MLR) model is applied to determine the linear trends and the other fitting parameters, such as ENSO and solar F10.7 responses in the upper mesosphere. This study indicates the daily mean cooling trend between 84 and 98 km is larger than that of nightly mean trend by ∼−1 K/decade, while differences in the solar response are within the fitting uncertainties.

Funder

National Science Foundation

High Altitude Observatory

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3