Tracking Moisture Sources of Precipitation over Central Asia: A Study Based on the Water-Source-Tagging Method

Author:

Jiang Jie1,Zhou Tianjun2,Wang Hailong3,Qian Yun3,Noone David4,Man Wenmin5

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, Beijing, China

2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

3. Pacific Northwest National Laboratory, Richland, Washington

4. Department of Physics, University of Auckland, Auckland, New Zealand, and College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis,Oregon

5. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractCentral Asia is a semiarid to arid region that is sensitive to hydrological changes. We use the Community Atmosphere Model, version 5 (CAM5), equipped with a water-tagging capability, to investigate the major moisture sources for climatological precipitation and its long-term trends over central Asia. Europe, the North Atlantic Ocean, and local evaporation, which explain 33.2% ± 1.5%, 23.0% ± 2.5%, and 19.4% ± 2.2% of the precipitation, respectively, are identified as the most dominant moisture sources for northern central Asia (NCA). For precipitation over southern central Asia (SCA), Europe, the North Atlantic, and local evaporation contribute 25.4% ± 2.7%, 18.0% ± 1.7%, and 14.7% ± 1.9%, respectively. In addition, the contributions of South Asia (8.6% ± 1.7%) and the Indian Ocean (9.5% ± 2.0%) are also substantial for SCA. Modulated by the seasonal meridional shift in the subtropical westerly jet, moisture originating from the low and midlatitudes is important in winter, spring, and autumn, whereas northern Europe contributes more to summer precipitation. We also explain the observed drying trends over southeastern central Asia in spring and over NCA in summer during 1956–2005. The drying trend over southeastern central Asia in spring is mainly due to the decrease in local evaporation and weakened moisture fluxes from the Arabian Peninsula and Arabian Sea associated with the warming of the western Pacific Ocean. The drying trend over NCA in summer can be attributed to a decrease in local evaporation and reduced moisture from northern Europe that is due to the southward shift of the subtropical westerly jet.

Funder

Chinese Academy of Sciences

International Partnership Program of Chinese Academy of Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3