Time-Varying Empirical Probability Densities of Southern Ocean Surface Winds: Linking the Leading Mode to SAM and QuantifyingWind Product Differences

Author:

Hell Momme C.1,Cornuelle Bruce D.1,Gille Sarah T.1,Lutsko Nicholas J.1

Affiliation:

1. University of California, San Diego, Scripps Institution of Oceanography; 9500 Gilman Drive, La Jolla, California 92093

Abstract

AbstractSouthern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO2 to the ocean interior. The relationships between mixed-layer ventilation, the Southern Annular Mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means.In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index (r = 0.82) and reflect SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. This Joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed-layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to mid-latitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode.The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A method for constructing directional surface wave spectra from ICESat-2 altimetry;The Cryosphere;2024-01-19

2. The Intrinsic 150‐Day Periodicity of the Southern Hemisphere Extratropical Large‐Scale Atmospheric Circulation;AGU Advances;2023-05-31

3. New insights into air-sea fluxes and their role in Subantarctic Mode Water formation;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-05-08

4. Southern Ocean phytoplankton dynamics and carbon export: insights from a seasonal cycle approach;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-05-08

5. Sub‐Seasonal Forcing Drives Year‐To‐Year Variations of Southern Ocean Primary Productivity;Global Biogeochemical Cycles;2022-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3