The Intrinsic 150‐Day Periodicity of the Southern Hemisphere Extratropical Large‐Scale Atmospheric Circulation

Author:

Lubis Sandro W.12ORCID,Hassanzadeh Pedram1ORCID

Affiliation:

1. Rice University Houston TX USA

2. Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractThe variability of the Southern Hemisphere (SH) extratropical large‐scale circulation is dominated by the Southern Annular Mode (SAM), whose timescale is extensively used as a key metric in evaluating state‐of‐the‐art climate models. Past observational and theoretical studies suggest that the SAM lacks any internally generated (intrinsic) periodicity. Here, we show, using observations and a climate model hierarchy, that the SAM has an intrinsic 150‐day periodicity. This periodicity is robustly detectable in the power spectra and principal oscillation patterns (aka dynamical mode decomposition) of the zonal‐mean circulation, and in hemispheric‐scale precipitation and ocean surface wind stress. The 150‐day period is consistent with the predictions of a new reduced‐order model for the SAM, which suggests that this periodicity is associated with a complex interaction of turbulent eddies and zonal wind anomalies, as the latter propagate from low to high latitudes. These findings present a rare example of periodic oscillations arising from the internal dynamics of the extratropical turbulent circulations. Based on these findings, we further propose a new metric for evaluating climate models, and show that some of the previously reported shortcomings and improvements in simulating SAM's variability connect to the models' ability in reproducing this periodicity. We argue that this periodicity should be considered in evaluating climate models and understanding the past, current, and projected Southern Hemisphere climate variability.

Funder

National Science Foundation

Office of Naval Research

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3