Maintenance Mechanisms of the Wintertime Subtropical High over the South Indian Ocean

Author:

Miyamoto Ayumu1ORCID,Nakamura Hisashi12,Miyasaka Takafumi1,Kosaka Yu1,Taguchi Bunmei3,Nishii Kazuaki4

Affiliation:

1. a Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan

2. b Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

3. c Faculty of Sustainable Design, University of Toyama, Toyama, Japan

4. d Graduate School of Bioresources, Mie University, Tsu, Japan

Abstract

Abstract Climatologically the surface Mascarene high over the subtropical south Indian Ocean (SIO) shifts westward toward austral winter, and its strength as a planetary-wave component maximizes in late austral winter, unlike its counterpart over other subtropical oceans. The present study investigates the maintenance mechanisms for the wintertime Mascarene high with a linear atmospheric dynamical model (LBM) and an atmospheric general circulation model (AGCM). The LBM experiments reveal the importance of cross-equatorial tropical influences. Deep convection associated with the Asian summer monsoon acts not only to shift the Mascarene high westward as its direct influence but also to enhance midtropospheric subsidence and equatorward surface winds over the central and western portions of the subtropical SIO. The associated near-surface cold advection and subsidence promote (suppress) the formation of low-level (deep convective) clouds. The resultant enhanced radiative cooling and reduced deep condensation heating both reinforce the equatorward portion of the surface high. The LBM experiments also reveal that seasonally enhanced storm-track activity over the SIO is important for maintaining the poleward portion of the Mascarene high through eddy heat and vorticity fluxes. The AGCM experiments demonstrate that the Agulhas Current system and the associated sea surface temperature (SST) front reinforce the high by energizing the storm-track activity. The present study thus proposes that both the Asian summer monsoon and the enhanced storm-track activity maintained by the Agulhas SST front externally modulate the positively coupled system between the wintertime Mascarene high and low-level clouds to realize its unique seasonality.

Funder

ministry of education, culture, sports, science and technology

japan science and technology agency

ministry of the environment

japan society for the promotion of science

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3