Statistical Differences of Quasigeostrophic Variables, Stability, and Moisture Profiles in North American Storm Tracks

Author:

Mercer Andrew E.1,Richman Michael B.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Three common synoptic storm tracks observed throughout the United States are the Alberta Clipper, the Colorado cyclone, and the East Coast storm. Numerous studies have been performed on individual storm tracks analyzing quasigeostrophic dynamics, stability, and moisture profiles in each. This study evaluated storms in each track to help diagnose patterns and magnitudes of the aforementioned quantities, documenting how they compare from track to track. Six diagnostic variables were computed to facilitate the comparison of the storm tracks: differential geostrophic absolute vorticity advection, temperature advection, Q-vector divergence, mean layer specific humidity, low-level stability, and midlevel stability. A dataset was compiled, consisting of 101 Alberta Clippers, 165 Colorado cyclones, and 159 East Coast cyclones and mean fields were generated for this comparison. Maxima and minima of the 25th and 75th percentiles were generated to diagnose magnitudes and patterns of strong versus weak cyclones and measure their similarities and differences to the mean patterns. Alberta Clippers were found to show the weakest magnitude of quasigeostrophic variables, while East Coast storms had the strongest magnitudes. Alberta Clippers maintained the lowest moisture content through their life cycle as well. However, East Coast storms were the most stable of the three tracks. Typically, correlations between storm tracks were high; suggesting that storm evolution is similar between tracks, in terms of the patterns of diagnostic variables measured. However, significant magnitude differences in the quasigeostrophic variables distinguished the storms in each track.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3