Extreme Winter Precipitation Regimes in Eastern North America: Synoptic-Scale and Thermodynamic Environments

Author:

Low Yeechian1,Gyakum John R.1,Atallah Eyad1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

Abstract We define extreme precipitation regimes (EPRs) during the eastern North American winter based on widespread and persistent heavy precipitation, using ERA5 precipitation data from 1979 to 2020. We find 62 EPRs and analyze their synoptic-scale and thermodynamic environments. EPRs impact most of eastern North America with heavy precipitation, especially from Louisiana to Quebec, and generally last for 5–8 days. They are associated with an anomalously strong 500-hPa trough–ridge over western–eastern North America that travels slowly eastward, favoring intrusions of moist, tropical air into eastern North America, and a strong baroclinic zone from the central United States to Atlantic Canada. They are also characterized by high frequencies of cyclones in the midwestern United States, anticyclones over eastern Canada and the subtropical Atlantic, and atmospheric rivers (ARs) in eastern North America. Precipitation is maintained by large moisture influxes, primarily from the Gulf of Mexico and Caribbean Sea, from the EPR start to the time midway through the EPR period. The influxes are often associated with ARs feeding into cyclones, where the moisture falls as precipitation. We also categorize EPRs based on the spatial anomaly correlation (AC) of synoptic-scale weather patterns between individual EPRs and the EPR composite. High AC EPRs have similar but stronger 500-hPa features over North America, greater moisture flux from the Gulf of Mexico and inland precipitation over eastern North America, farther inland cyclone track, higher frequency of subtropical Atlantic anticyclones, and lower EPR-to-EPR variability than low AC EPRs. Significance Statement Cool-season extreme precipitation regimes (EPRs) often lead to flooding and other impacts and represent a significant forecast challenge. We define and analyze EPRs during the eastern North American winter to obtain a better understanding of their associated meteorological conditions. We also categorize EPRs into two distinct categories to capture the variability among EPRs. EPRs generally last 5–8 days and are associated with slowly moving large-scale weather patterns favoring intrusions of moist, tropical air into eastern North America, a strong temperature contrast, and frequent cyclones in the midwestern United States with anticyclones to the north and south. The intrusions of moist, tropical air are often associated with atmospheric rivers (ARs) that deposit their moisture in cyclones as precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of Iran’s precipitation regimes;Theoretical and Applied Climatology;2023-09-07

2. Identification of Iran's precipitation regimes;THEOR APPL CLIMATOL;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3