Additive Noise for Storm-Scale Ensemble Data Assimilation

Author:

Dowell David C.1,Wicker Louis J.2

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract An “additive noise” method for initializing ensemble forecasts of convective storms and maintaining ensemble spread during data assimilation is developed and tested for a simplified numerical cloud model (no radiation, terrain, or surface fluxes) and radar observations of the 8 May 2003 Oklahoma City supercell. Every 5 min during a 90-min data-assimilation window, local perturbations in the wind, temperature, and water-vapor fields are added to each ensemble member where the reflectivity observations indicate precipitation. These perturbations are random but have been smoothed so that they have correlation length scales of a few kilometers. An ensemble Kalman filter technique is used to assimilate Doppler velocity observations into the cloud model. The supercell and other nearby cells that develop in the model are qualitatively similar to those that were observed. Relative to previous storm-scale ensemble methods, the additive-noise technique reduces the number of spurious cells and their negative consequences during the data assimilation. The additive-noise method is designed to maintain ensemble spread within convective storms during long periods of data assimilation, and it adapts to changing storm configurations. It would be straightforward to use this method in a mesoscale model with explicit convection and inhomogeneous storm environments.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3