Tropical Cyclone Footprints in Long-Term Mean State and Multiscale Climate Variability in the Western North Pacific as Seen in the JRA-55 Reanalysis

Author:

Arakane Sho12,Hsu Huang-Hsiung2

Affiliation:

1. a Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

2. b Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Abstract

AbstractThe monsoon trough and subtropical high have long been acknowledged to exert a substantial modulating effect on the genesis and development of tropical cyclones (TCs) in the western North Pacific (WNP). However, the potential upscaling effect of TCs on large-scale circulation remains poorly understood. This study revealed the considerable contributions of TCs to the climate mean state and variability in the WNP between 1958 and 2019, characterized by a strengthened monsoon trough and weakened subtropical anticyclonic circulation in the lower troposphere, enhanced anticyclonic circulation in the upper troposphere, and warming throughout the troposphere. TCs constituted distinct footprints in the long-term mean states of the WNP summer monsoon, and their contributions increased intraseasonal and interannual variance by 50%–70%. The interdecadal variations and long-term trends in intraseasonal variance were mainly due to the year-to-year fluctuations in TC activity. The size of TC footprints was positively correlated with the magnitude of TC activity. Our findings suggest that the full understanding of climate variability and changes cannot be achieved simply on the basis of low-frequency, large-scale circulations. Rather, TCs must be regarded as a crucial component in the climate system, and their interactions with large-scale circulations require thorough exploration. The long-term dataset created in this study provides an opportunity to study the interaction between TCs and TC-free large-scale circulations to advance our understanding of climate variability in the WNP. Our findings also indicate that realistic climate projections must involve the accurate simulations of TCs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3