Subseasonal-to-Seasonal Arctic Sea Ice Forecast Skill Improvement from Sea Ice Concentration Assimilation

Author:

Zhang Yong-Fei12ORCID,Bushuk Mitchell13,Winton Michael1,Hurlin Bill1,Delworth Thomas1,Harrison Matthew1,Jia Liwei13,Lu Feiyu2,Rosati Anthony1,Yang Xiaosong1

Affiliation:

1. a National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

2. b Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

3. c University Corporation for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The current GFDL seasonal prediction system, the Seamless System for Prediction and Earth System Research (SPEAR), has shown skillful prediction of Arctic sea ice extent with atmosphere and ocean constrained by observations. In this study we present improvements in subseasonal and seasonal predictions of Arctic sea ice by directly assimilating sea ice observations. The sea ice initial conditions from a data assimilation (DA) system that assimilates satellite sea ice concentration (SIC) observations are used to produce a set of reforecast experiments (IceDA) starting from the first day of each month from 1992 to 2017. Our evaluation of daily sea ice extent prediction skill concludes that the SPEAR system generally outperforms the anomaly persistence forecast at lead times beyond 1 month. We primarily focus our analysis on daily gridcell-level sea ice fields. SIC DA improves prediction skill of SIC forecasts prominently in the June-, July-, August-, and September-initialized reforecasts. We evaluate two additional user-oriented metrics: the ice-free probability (IFP) and ice-free date (IFD). IFP is the probability of a grid cell experiencing ice-free conditions in a given year, and IFD is the first date on which a grid cell is ice free. A combined analysis of IFP and IFD demonstrates that the SPEAR model can make skillful predictions of local ice melt as early as May, with modest improvements from SIC DA.

Funder

Princeton University

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3