Deep Learning of Systematic Sea Ice Model Errors From Data Assimilation Increments

Author:

Gregory William1ORCID,Bushuk Mitchell2ORCID,Adcroft Alistair1ORCID,Zhang Yongfei1,Zanna Laure3ORCID

Affiliation:

1. Atmospheric and Oceanic Sciences Program Princeton University Princeton NJ USA

2. Geophysical Fluid Dynamics Laboratory NOAA Princeton NJ USA

3. Courant Institute of Mathematical Sciences New York University New York NY USA

Abstract

AbstractData assimilation is often viewed as a framework for correcting short‐term error growth in dynamical climate model forecasts. When viewed on the time scales of climate however, these short‐term corrections, or analysis increments, can closely mirror the systematic bias patterns of the dynamical model. In this study, we use convolutional neural networks (CNNs) to learn a mapping from model state variables to analysis increments, in order to showcase the feasibility of a data‐driven model parameterization which can predict state‐dependent model errors. We undertake this problem using an ice‐ocean data assimilation system within the Seamless system for Prediction and EArth system Research (SPEAR) model, developed at the Geophysical Fluid Dynamics Laboratory, which assimilates satellite observations of sea ice concentration every 5 days between 1982 and 2017. The CNN then takes inputs of data assimilation forecast states and tendencies, and makes predictions of the corresponding sea ice concentration increments. Specifically, the inputs are states and tendencies of sea ice concentration, sea‐surface temperature, ice velocities, ice thickness, net shortwave radiation, ice‐surface skin temperature, sea‐surface salinity, as well as a land‐sea mask. We find the CNN is able to make skillful predictions of the increments in both the Arctic and Antarctic and across all seasons, with skill that consistently exceeds that of a climatological increment prediction. This suggests that the CNN could be used to reduce sea ice biases in free‐running SPEAR simulations, either as a sea ice parameterization or an online bias correction tool for numerical sea ice forecasts.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3