Predicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models

Author:

Lynn Barry H.1,Yair Yoav2,Price Colin3,Kelman Guy1,Clark Adam J.4

Affiliation:

1. Weather It Is Ltd., Efrat, Israel

2. Department of Life and Natural Sciences, Open University of Israel, Ra’anana, Israel

3. Department of Geophysical, Atmospheric, and Planetary Sciences Tel Aviv University, Tel Aviv, Israel

4. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract A new prognostic, spatially and temporally dependent variable is introduced to the Weather Research and Forecasting Model (WRF). This variable is called the potential electrical energy (Ep). It was used to predict the dynamic contribution of the grid-scale-resolved microphysical and vertical velocity fields to the production of cloud-to-ground and intracloud lightning in convection-allowing forecasts. The source of Ep is assumed to be the noninductive charge separation process involving collisions of graupel and ice particles in the presence of supercooled liquid water. The Ep dissipates when it exceeds preassigned threshold values and lightning is generated. An analysis of four case studies is presented and analyzed. On the 4-km simulation grid, a single cloud-to-ground lightning event was forecast with about equal values of probability of detection (POD) and false alarm ratio (FAR). However, when lighting was integrated onto 12-km and then 36-km grid overlays, there was a large improvement in the forecast skill, and as many as 10 cloud-to-ground lighting events were well forecast on the 36-km grid. The impact of initial conditions on forecast accuracy is briefly discussed, including an evaluation of the scheme in wintertime, when lightning activity is weaker. The dynamic algorithm forecasts are also contrasted with statistical lightning forecasts and differences are noted. The scheme is being used operationally with the Rapid Refresh (13 km) data; the skill scores in these operational runs were very good in clearly defined convective situations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference78 articles.

1. Lightning explodes dynamite;American Meteorological Society;Mon. Wea. Rev.,1924

2. Loss of forty-seven head of cattle by a single lightning bolt;American Meteorological Society;Mon. Wea. Rev.,1924

3. A reassessment of U.S. lightning mortality;Ashley;Bull. Amer. Meteor. Soc.,2009

4. Simulation of a supercellular storm using a three-dimensional mesoscale model with an explicit lightning flash scheme;Barthe;J. Geophys. Res.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3