Application of WRF 3DVAR to Operational Typhoon Prediction in Taiwan: Impact of Outer Loop and Partial Cycling Approaches

Author:

Hsiao Ling-Feng1,Chen Der-Song2,Kuo Ying-Hwa3,Guo Yong-Run3,Yeh Tien-Chiang2,Hong Jing-Shan2,Fong Chin-Tzu2,Lee Cheng-Shang4

Affiliation:

1. Taiwan Typhoon and Flood Research Institute, National Applied Research Laboratories, Taipei, Taiwan

2. Central Weather Bureau, Taipei, Taiwan

3. National Center for Atmospheric Research, Boulder, Colorado

4. Taiwan Typhoon and Flood Research Institute, National Applied Research Laboratories, and Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Abstract

Abstract In this paper, the impact of outer loop and partial cycling with the Weather Research and Forecasting Model’s (WRF) three-dimensional variational data assimilation system (3DVAR) is evaluated by analyzing 78 forecasts for three typhoons during 2008 for which Taiwan’s Central Weather Bureau (CWB) issued typhoon warnings, including Sinlaku, Hagupit, and Jangmi. The use of both the outer loop and the partial cycling approaches in WRF 3DVAR are found to reduce typhoon track forecast errors by more than 30%, averaged over a 72-h period. The improvement due to the outer loop approach, which can be more than 42%, was particularly significant in the early phase of the forecast. The use of the outer loop allows more observations to be assimilated and produces more accurate analyses. The assimilation of additional nonlinear GPS radio occultation (RO) observations over the western North Pacific Ocean, where traditional observational data are lacking, is particularly useful. With the lack of observations over the tropical and subtropical oceans, the error in the first-guess field (which is based on a 6-h forecast of the previous cycle) will continue to grow in a full-cycling limited-area data assimilation system. Even though the use of partial cycling only shows a slight improvement in typhoon track forecast after 12 h, it has the benefit of suppressing the growth of the systematic model error. A typhoon prediction model using the Advanced Research core of the WRF (WRF-ARW) and the WRF 3DVAR system with outer loop and partial cycling substantially improves the typhoon track forecast. This system, known as Typhoon WRF (TWRF), has been in use by CWB since 2010 for operational typhoon predictions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3