Hurricane Simulation and Nonstationary Extremal Analysis for a Changing Climate

Author:

Carney Meagan1ORCID,Kantz Holger2,Nicol Matthew3

Affiliation:

1. a University of Queensland, Brisbane, Australia

2. b Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

3. c University of Houston, Houston, Texas

Abstract

Abstract Particularly important to hurricane risk assessment for coastal regions is finding accurate approximations of return probabilities of maximum wind speeds. Since extremes in maximum wind speed have a direct relationship with minima in the central pressure, accurate wind speed return estimates rely heavily on proper modeling of the central pressure minima. Using the HURDAT2 database, we show that the central pressure minima of hurricane events can be appropriately modeled by a nonstationary extreme value distribution. We also provide and validate a Poisson distribution with a nonstationary rate parameter to model returns of hurricane events. Using our nonstationary models and numerical simulation techniques from established literature, we perform a simulation study to model returns of maximum wind speeds of hurricane events along the North Atlantic coast. We show that our revised model agrees with current data and results in an expectation of higher maximum wind speeds for all regions along the coast, with the highest maximum wind speeds occurring along the northeast seaboard.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference31 articles.

1. Batts, M. E., M. R. Cordes, L. R. Russell, and E. S. J. R. Shaver, 1980: Hurricane wind speeds in the United States. U.S. Department of Commerce National Bureau of Standards Doc., 60 pp., https://nvlpubs.nist.gov/nistpubs/Legacy/BSS/nbsbuildingscience124.pdf.

2. Generation of a global synthetic tropical cyclone hazard dataset using storm;Bloemendaal, N.,2020

3. Robust regional clustering and modeling of nonstationary summer temperature extremes across Germany;Carney, M.,2020

4. Nonstationarity of summer temperature extremes in Texas;Carney, M.,2019

5. Simulation and extremal analysis of hurricane events;Casson, E.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3