The Impact of Projected Changes in Hurricane Frequencies on U.S. Hurricane Wind and Surge Damage

Author:

Jewson Stephen1ORCID

Affiliation:

1. a Lambda Climate Research, London, United Kingdom

Abstract

Abstract We use a simple risk model for U.S. hurricane wind and surge economic damage to investigate the impact of projected changes in the frequencies of hurricanes of different intensities due to climate change. For average annual damage, we find that changes in the frequency of category-4 storms dominate. For distributions of annual damage, we find that changes in the frequency of category-4 storms again dominate for all except the shortest return periods. Sensitivity tests show that accounting for landfall, uncertainties, and correlations leads to increases in damage estimates. When we propagate the distributions of uncertain frequency changes to give a best estimate of the changes in damage, the changes are moderate. When we pick individual scenarios from within the distributions of frequency changes, we find a significant probability of much larger changes in damage. The inputs on which our study depends are highly uncertain, and our methods are approximate, leading to high levels of uncertainty in our results. Also, the damage changes we consider are only part of the total possible change in hurricane damage due to climate change. Total damage change estimates would also need to include changes due to other factors, including possible changes in genesis, tracks, size, forward speed, sea level, rainfall, and exposure. Nevertheless, we believe that our results give important new insights into U.S. hurricane risk under climate change. Significance Statement We investigate how changes in the frequencies of hurricanes of different intensities as a result of climate change may contribute to changes in U.S. economic damage due to wind and surge. We find that economic damage will likely increase as a result of projected increases in the frequency of landfalling hurricanes. Analysis of our results shows that increases in the frequency of category-4 storms are the main driver of the changes. Our best estimate results, based on a multimodel ensemble, give modest increases in damage, but within the ensemble there are individual scenarios that give much larger increases in damage. The large range of individual damage estimates is a motivation for continuing efforts to reduce the uncertainty around hurricane projections under climate change.

Funder

Lambda Climate Research Ltd

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. A statistical–parametric model of tropical cyclones for hazard assessment;Arthur, W. C.,2021

2. Recent increases in tropical cyclone intensification rates;Bhatia, K. T.,2019

3. Generation of a global synthetic tropical cyclone hazard dataset using STORM;Bloemendaal, N.,2020

4. Hurricane simulation and nonstationary extremal analysis for a changing climate;Carney, M.,2022

5. A formal approach to catastrophe risk assessment and management;Clark, K.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3