Affiliation:
1. 1 Atmospheric Sciences Research Center, SUNY University at Albany, Albany, New York
2. 2 New York State Mesonet, SUNY University at Albany, Albany, New York
3. 3 Department of Atmospheric and Environmental Sciences, SUNY University at Albany, Albany, New York
4. 4 National Center for Atmospheric Research, Boulder, Colorado
Abstract
AbstractVertical profiles of atmospheric temperature, moisture, wind, and aerosols are essential information for weather monitoring and prediction. Their availability, however, is limited in space and time due to the significant resources required to observe them. To fill this gap, the New York State Mesonet (NYSM) Profiler Network has been deployed as a national testbed to facilitate the research, development and evaluation of ground-based profiling technologies and applications. The testbed comprises 17 profiler stations across the state, forming a long-term regional observational network. Each Profiler station is comprised of a ground-based Doppler lidar, a microwave radiometer (MWR) and an environmental Sky Imaging Radiometer (eSIR). Thermodynamic profiles (temperature and humidity) from the MWR; wind and aerosol profiles from the Doppler lidar; and solar radiance and optical depth parameters from the eSIR are collected, processed, disseminated, and archived every 10 minutes. This paper introduces the NYSM Profiler Network and reviews the network design and siting, instrumentation, network operations and maintenance, data and products, and some example applications highlighting the benefits of the network. Some sample applications include improved situational awareness and monitoring of the sea/land breeze, long-range wildfire smoke transport, air quality (PM2.5 and AOD) and boundary layer height. Ground-based profiling systems promise a path forward for filling a critical gap in the nation’s observing system with the potential to improve analysis and prediction for many weather-sensitive sectors, such as aviation, ground transportation, health, and wind energy.
Publisher
American Meteorological Society
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献