Deep-Learning-Based Gridded Downscaling of Surface Meteorological Variables in Complex Terrain. Part II: Daily Precipitation

Author:

Sha Yingkai1,Gagne II David John2,West Gregory3,Stull Roland1

Affiliation:

1. a Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada

2. b National Center for Atmospheric Research, Boulder, Colorado

3. c BC Hydro, Burnaby, British Columbia Canada

Abstract

AbstractStatistical downscaling (SD) derives localized information from larger-scale numerical models. Convolutional neural networks (CNNs) have learning and generalization abilities that can enhance the downscaling of gridded data (Part I of this study experimented with 2-m temperature). In this research, we adapt a semantic-segmentation CNN, called UNet, to the downscaling of daily precipitation in western North America, from the low resolution (LR) of 0.25° to the high resolution (HR) of 4-km grid spacings. We select LR precipitation, HR precipitation climatology, and elevation as inputs; train UNet over the subset of the south- and central-western United States using Parameter–Elevation Regressions on Independent Slopes Model (PRISM) data from 2015 to 2018, and test it independently in all available domains from 2018 to 2019. We proposed an improved version of UNet, which we call Nest-UNet, by adding deep-layer aggregation and nested skip connections. Both the original UNet and Nest-UNet show generalization ability across different regions and outperform the SD baseline (bias-correction spatial disaggregation), with lower downscaling error and more accurate fine-grained textures. Nest-UNet also shares the highest amount of information with station observations and PRISM, indicating good ability to reduce the uncertainty of HR downscaling targets.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3