Quantifying the Impact of Precipitation-Type Algorithm Selection on the Representation of Freezing Rain in an Ensemble of Regional Climate Model Simulations

Author:

McCray Christopher D.12,Thériault Julie M.2,Paquin Dominique1,Bresson Émilie1

Affiliation:

1. a Ouranos, Montréal, Québec, Canada

2. b Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montréal, Québec, Canada

Abstract

Abstract Given their potentially severe impacts, understanding how freezing rain events may change as the climate changes is of great importance to stakeholders including electrical utility companies and local governments. Identification of freezing rain in climate models requires the use of precipitation-type algorithms, and differences between algorithms may lead to differences in the types of precipitation identified for a given thermodynamic profile. We explore the uncertainty associated with algorithm selection by applying four algorithms (Cantin and Bachand, Baldwin, Ramer, and Bourgouin) offline to an ensemble of simulations of the fifth-generation Canadian Regional Climate Model (CRCM5) at 0.22° grid spacing. First, we examine results for the CRCM5 driven by ERA-Interim reanalysis to analyze how well the algorithms reproduce the recent climatology of freezing rain and how results vary depending on algorithm parameters and the characteristics of available model output. We find that while the Ramer and Baldwin algorithms tend to be better correlated with observations than Cantin and Bachand or Bourgouin, their results are highly sensitive to algorithm parameters and to the number of pressure levels used. We also apply the algorithms to four CRCM5 simulations driven by different global climate models (GCMs) and find that the uncertainty associated with algorithm selection is generally similar to or greater than that associated with choice of driving GCM for the recent past climate. Our results provide guidance for future studies on freezing rain in climate simulations and demonstrate the importance of accounting for uncertainty between algorithms when identifying precipitation type from climate model output. Significance Statement Freezing rain events and ice storms can have major consequences, including power outages and dangerous road conditions. It is therefore important to understand how climate change might affect the frequency and severity of these events. One source of uncertainty in climate studies of these events is related to the choice of algorithm used to detect freezing rain in model output. We compare the frequency of freezing rain identified using four different algorithms and find sometimes large differences depending on the algorithm chosen over some regions. Our findings highlight the importance of taking this source of uncertainty into account and will provide researchers with guidance as to which algorithms are best suited for climate studies of freezing rain.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference53 articles.

1. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases;Arora, V. K.,2011

2. Baldwin, M. E., and S. Contorno, 1993: Development of a weather-type prediction system for NMC’s mesoscale Eta model. 13th Conf. on Weather Analysis and Forecasting, Vienna, VA, Amer. Meteor. Soc., 86–87.

3. Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization;Benjamin, S. G.,2016

4. Regional and local influences on freezing drizzle, freezing rain, and ice pellet events;Bernstein, B. C.,2000

5. A revised Bourgouin precipitation-type algorithm;Birk, K.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3