The Role of Wind Stress Curl in Jet Separation at a Cape

Author:

Castelao Renato M.1,Barth John A.1

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Abstract A high-resolution numerical model is used to study the importance of spatial variability in the wind forcing to the separation of a coastal upwelling jet at a cape. An idealized topography and wind field based on observations from the Cape Blanco (Oregon) region are used. Several simulations are investigated, with both the intensity and the spatial structure of the wind forcing varied to isolate the importance of the observed intensification in the wind stress and wind stress curl magnitudes to the separation process. A simulation using a straight coast confirms that the presence of the cape is crucial for separation. Wind stress intensification by itself, with zero curl, does not aid separation. The wind stress curl intensification south of the cape, on the other hand, is important for controlling details of the process. Because the positive wind stress curl drives upwelling, isotherms in the offshore region tilt upward, creating a pressure gradient that sustains an intensification of the southward velocities via the thermal wind balance. This aids jet separation via continuity and by creating potential vorticity contours that track far offshore of the cape. The timing of the separation is dependent on the intensity of the wind stress curl (stronger curl leads to earlier separation), while how far offshore the jet is deflected depends on the offshore extent of the region of positive curl close to the coast (increasing the extent increases the deflection).

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3