Separation of an Upwelling Current Bounding the Juan de Fuca Eddy

Author:

Klymak Jody M.12ORCID,Allen Susan E.34ORCID,Waterman Stephanie3ORCID

Affiliation:

1. School of Earth and Ocean Sciences University of Victoria Vancouver BC Canada

2. Department of Physics & Astronomy University of Victoria Vancouver BC Canada

3. Department of Earth, Ocean and Atmospheric Sciences University of British Columbia Vancouver BC Canada

4. Institute of Applied Mathematics University of British Columbia Vancouver BC Canada

Abstract

AbstractObservations of temperature, salinity, and oxygen on the southern Vancouver Island shelf show a large‐scale exchange of shelf water with offshore water, just offshore of a semi‐permanent recirculation, often termed the Juan de Fuca Eddy. The Eddy occupies a region where the shelf widens abruptly in the lee of a bank. The water in this Eddy is a mixture of offshore water and water from a buoyant coastal current. This water is well‐mixed along a mixing line in temperature‐salinity space, though it retains stratification, and is either rapidly mixed or has a long residence time. There is a less than 1 km wide temperature‐salinity front on the offshore side of this well‐mixed water that has no sign of instabilities. The clearest evidence of cross‐front transport is found during a tidally resolved survey over a bank. The transport is due to flows in the cross‐bank direction that also drive 50 m tall hydraulic jumps. Upstream of the Eddy, there is an along‐shelf current flowing equatorward. However, the whole current separates from the shelf before reaching the Eddy, in the lee of a bank, and is replaced by water from offshore. The separation event was also seen in sea‐surface temperatures from satellite images as a tongue of cool coastal water that is ejected offshore.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3