Sensitivity of Global Mixing and Fluxes to Isolated Transport Barriers

Author:

Nakamura Noboru1

Affiliation:

1. Department of Geophysical Sciences, University of Chicago, Chicago, Illinois

Abstract

Abstract Effects of isolated transport barriers on the global mixing and fluxes of a tracer are investigated, where a barrier is defined as a local minimum in effective diffusivity. An idealized 1D model with a prescribed diffusivity profile, with or without forcing, is used to show that the structure, flux, and decay rates of the tracer are all very sensitive to the barrier geometry, particularly when it is deep and narrow. Although the tracer gradients and the variance dissipation are concentrated to the barrier region, the flux shows a more global response to the barrier, decreasing everywhere. The harmonic mean of effective diffusivity is proposed as a useful first-order predictor of the global transport. This 1D model is used to diagnose the isentropic transport in the upper troposphere and lower stratosphere with offline transport calculations driven by the Met Office winds. The global tracer variance in these calculations decays approximately exponentially, and the time-mean decay rate and tracer structure are well captured by the gravest 1D eigenmode with the time-averaged effective diffusivity. However, the decay rate and the flux of the full solution are 15%–20% smaller than those of the eigenmode because of a negative temporal correlation between the effective diffusivity and the gradient. The vertical and decadal variations of the decay rates are consistent with the corresponding variations in the harmonic mean effective diffusivity. To the extent that the global mixing is sensitive to the local barrier properties, and to the extent that the latter are sensitive to the errors in advecting winds and model numerics, modeling of global atmospheric transport remains a challenge. This may explain, at least partially, the disparate model estimates reported in the literature.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference26 articles.

1. A seasonal climatology of effective diffusivity in the stratosphere.;Allen;J. Geophys. Res.,2001

2. Tracer equivalent latitude: A diagnostic tool for isentropic transport studies.;Allen;J. Atmos. Sci.,2003

3. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere.;Brewer;Quart. J. Roy. Meteor. Soc.,1949

4. Origin and distribution of the polyatomic molecules in the atmosphere.;Dobson;Proc. Roy. Soc. London,1956

5. Scalar variance decay in chaotic advection and Batchelor-regime turbulence.;Fereday;Phys. Rev. E,2002

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3