Assessment of the ERA-Interim Winds Using High-Altitude Stratospheric Balloons

Author:

Duruisseau Fabrice1,Huret Nathalie1,Andral Alice2,Camy-Peyret Claude3

Affiliation:

1. Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Centre National de la Recherche Scientifique, and Université d’Orléans, Orléans, France

2. Centre National d’Études Spatiales, Toulouse, France

3. L’Institut Pierre-Simon Laplace, UPMC/UVSQ, Paris, France

Abstract

Abstract This study focuses on the ability of ERA-Interim to represent wind variability in the middle atmosphere. The originality of the proposed approach is that wind measurements are deduced from the trajectories of zero-pressure balloons that can reach high-stratospheric altitudes. These balloons are mainly used to carry large scientific payloads. The trajectories of balloons launched above Esrange, Sweden, and Teresina, Brazil, from 2000 to 2011 were used to deduce zonal and meridional wind components (by considering the balloon as a perfect tracer at high altitude). Collected data cover several dynamical conditions associated with the winter and summer polar seasons and west and east phases of the quasi-biennial oscillation at the equator. Systematic comparisons between measurements and ERA-Interim data were performed for the two horizontal wind components, as well as wind speed and wind direction in the [100, 2]-hPa pressure range to deduce biases between the model and balloon measurements as a function of altitude. Results show that whatever the location and the geophysical conditions considered, biases between ERA-Interim and balloon wind measurements increase as a function of altitude. The standard deviation of the model–observation wind differences can attain more than 5 m s−1 at high altitude (pressure P < 20 hPa). A systematic ERA-Interim underestimation of the wind speed is observed and large biases are highlighted, especially for equatorial flights.

Funder

The Ecole Doctorale (EMSTU) of the Université d’Orléans

The Region Centre

the Labex VOLTAIRE

SPARC/WMO

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3