Stochastic and Perturbed Parameter Representations of Model Uncertainty in Convection Parameterization*

Author:

Christensen H. M.1,Moroz I. M.2,Palmer T. N.1

Affiliation:

1. Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

2. Oxford Centre for Industrial and Applied Mathematics, University of Oxford, Oxford, United Kingdom

Abstract

Abstract It is now acknowledged that representing model uncertainty in atmospheric simulators is essential for the production of reliable probabilistic forecasts, and a number of different techniques have been proposed for this purpose. This paper presents new perturbed parameter schemes for use in the European Centre for Medium-Range Weather Forecasts (ECMWF) convection scheme. Two types of scheme are developed and implemented. Both schemes represent the joint uncertainty in four of the parameters in the convection parameterization scheme, which was estimated using the Ensemble Prediction and Parameter Estimation System (EPPES). The first scheme developed is a fixed perturbed parameter scheme, where the values of uncertain parameters are varied between ensemble members, but held constant over the duration of the forecast. The second is a stochastically varying perturbed parameter scheme. The performance of these schemes was compared to the ECMWF operational stochastic scheme, stochastically perturbed parameterization tendencies (SPPT), and to a model that does not represent uncertainty in convection. The skill of probabilistic forecasts made using the different models was evaluated. While the perturbed parameter schemes improve on the stochastic parameterization in some regards, the SPPT scheme outperforms the perturbed parameter approaches when considering forecast variables that are particularly sensitive to convection. Overall, SPPT schemes are the most skillful representations of model uncertainty owing to convection parameterization.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Arnold, H. M. , 2013: Stochastic parametrisation and model uncertainty. Ph.D. thesis, University of Oxford, 238 pp.

2. Stochastic parametrizations and model uncertainty in the Lorenz ’96 system

3. Representing equilibrium and nonequilibrium convection in large-scale models;Bechtold;J. Atmos. Sci.,2014

4. A stochastic parametrization for deep convection using cellular automata;Bengtsson;Quart. J. Roy. Meteor. Soc.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3