Are Eyewall Replacement Cycles Governed Largely by Axisymmetric Balance Dynamics?

Author:

Abarca Sergio F.1,Montgomery Michael T.1

Affiliation:

1. Naval Postgraduate School, Monterey, California

Abstract

Abstract The authors question the widely held view that radial contraction of a secondary eyewall during an eyewall replacement cycle is well understood and governed largely by the classical theory of axisymmetric balance dynamics. The investigation is based on a comparison of the secondary circulation and derived tangential wind tendency between a full-physics simulation and the Sawyer–Eliassen balance model. The comparison is made at a time when the full-physics model exhibits radial contraction of the secondary eyewall during a canonical eyewall replacement cycle. It is shown that the Sawyer–Eliassen model is unable to capture the phenomenology of secondary eyewall radial contraction because it predicts a net spindown of the boundary layer tangential winds and does not represent the boundary layer spinup mechanism that has been articulated in recent work.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference15 articles.

1. Essential dynamics of secondary eyewall formation;Abarca;J. Atmos. Sci.,2013

2. Departures from axisymmetric balance dynamics during secondary eyewall formation;Abarca;J. Atmos. Sci.,2014

3. How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?;Kepert;J. Atmos. Sci.,2013

4. Paradigms for tropical-cyclone intensification;Montgomery,2014

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3