Departures from Axisymmetric Balance Dynamics during Secondary Eyewall Formation

Author:

Abarca Sergio F.1,Montgomery Michael T.1

Affiliation:

1. Naval Postgraduate School, Monterey, California

Abstract

Abstract Departures from axisymmetric balance dynamics are quantified during a case of secondary eyewall formation. The case occurred in a three-dimensional mesoscale convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation exhibits a canonical eyewall replacement cycle. Departures from balance dynamics are quantified by comparing the azimuthally averaged secondary circulation and corresponding tangential wind tendencies of the mesoscale integration with those diagnosed as the axisymmetric balanced response of a vortex subject to diabatic and tangential momentum forcing. Balance dynamics is defined here, following the tropical cyclone literature, as those processes that maintain a vortex in axisymmetric thermal wind balance. The dynamical and thermodynamical fields needed to characterize the background vortex for the Sawyer–Eliassen inversion are obtained by azimuthally averaging the relevant quantities in the mesoscale integration and by computing their corresponding balanced fields. Substantial differences between azimuthal averages and their homologous balance-derived fields are found in the boundary layer. These differences illustrate the inappropriateness of the balance assumption in this region of the vortex (where the secondary eyewall tangential wind maximum emerges). Although the balance model does broadly capture the sense of the forced transverse (overturning) circulation, the balance model is shown to significantly underestimate the inflow in the boundary layer. This difference translates to unexpected qualitative differences in the tangential wind tendency. The main finding is that balance dynamics does not capture the tangential wind spinup during the simulated secondary eyewall formation event.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3